ACKNOWLEDGEMENTS

- Specific credits via citations at bottom of slides
- In random order: Teresa Fan, Andrew Lane, Hunter Moseley, Marc Warmoes, Qiushi Sun, Woo-Young Kang, Julie Tan, Vennila Arumugum, Laura Bandura, Katherine Sellers, Pawel Lorkiewicz PhD, Alex Belshof, Mohamed Farag, Ye Yang
- Surgeons: Michael Bousamra MD, Matthew Fox MD, Jeremiah Martin MD, Angela Mahan MD, Chin-wei Tseng MD
- Markey Cancer Center, Univ of Kentucky
- UK Research Foundation
- Univ. of Louisville Brown Cancer Center NMR Facility
- J.G. Brown Foundation
- NIH (1R01CA118434-01A2, 3R01CA118434-02S1, 1P01CA163223-01A1, 1U24DK097215-01A1)
- Kentucky Lung Cancer Foundation
- NSF EPS-0447479

Outline

- Stable-Isotope Resolved Metabolomics
 - Intro
 - Metabolism is substructures
 - “Sufficient” Resolution in MS
 - Forward to mSIRM
Metabolites are the “nuts & bolts” of biology: Like real nuts & bolts, the same parts are used in many places for different reasons.

Main Strategy:

Looking for HAY STRAW in haystack! But we still need needles!

Converts certain straws ➔ needles
Chemical ID ≠ Biochemical ID
Analyte ≠ “Metabolite”

Fan et al., Pharmacology & Therapeutics 133 (2012) 366–391
Metabolic fate of 13C$_6$-glucose in human NSCLC

Glycolysis
- Lactate → Pyruvate → CO$_2$ → 3-PGA → 3-C$_6$-Glc → Cancer
- Gly → Ser → Normal

Krebs Cycle
- Aspartate → OAA → citrate → c-Aconitate → CO$_2$ → succinyl CoA
- Malate → CO$_2$ → succinate → γKetoglutarate → oxaloacetate → Fumarate → CO$_2$ → acetyl CoA

Outline
- Stable-Isotope Resolved Metabolism
 - Intro
 - Metabolism is substructures
 - “Sufficient” Resolution in MS
 - Forward to mSIRM

High Information Throughput (HIT)
- Control
- Selenite
- CH$_2$-O-R$_1$ (C18:0)
- CH-O-R$_2$ (C20:4)
- CH$_2$-O-P-inositol PI

Control
- 13C$_6$ Glucose A549

Selenite
- 13C$_6$ Glucose A549
- 5 min Nanospray LTQ-FT @ 200K Resolution
Metabolism is Substructures

13C Dispersal into Substructures

Glycolysis
- 1-C metabolism
- Lactate → Oxaloacetate
- α-Ketoglutarate
- Pyruvate → CO₂
- 3-PGA
- Glc

Krebs Cycle
- Aspartate → Oxaloacetate
- Malate → Fumarate
- Succinate → CO₂

UDP-GlcNAC 13C Convergence

- Uridine-diphosphate-N-acetylglucosamine

- N-Linked GlcNAcylation:
 - Posttranslational modification of proteins at N residues.
 - Involved in protein targeting via the ER and Golgi complex.
- O-Linked GlcNAcylation:
 - Posttranslational modification of proteins at S and T residues.

UDP-GlcNac Labeling has Complex Time Course

- UDP-GlcNAc labeling FT-MS

Known UDP-GlcNac Biosynthesis

- Carbohydrate metabolism
- NADH production

- Glycolysis
- Pyruvate dehydrogenase complex

- Pentose phosphate pathway
- Glucose-6-phosphate
- Fructose-6-phosphate

- Glucose-6-phosphate
- Fructose-6-phosphate
- Glucosamine-6-phosphate
- UDP-glucosamine-6-P

- Pyrimidine biosynthesis
- NADH production

- Carbamoyl phosphate synthetase II
- Pyrimidine biosynthesis

- UMP
- CMP
- UDP-glucose

Moiety Model of Isotopologue Intensities

\[I_0 = g_0 r_0 a_0 u_0 \]
\[I_1 = g_0 r_0 a_0 u_1 \]
\[I_2 = g_0 r_0 a_0 u_2 + g_0 r_0 a_2 u_0 \]
\[I_3 = g_0 r_0 a_0 u_3 + g_0 r_0 a_2 u_1 \]
\[I_4 = g_0 r_0 a_0 u_4 \]
\[I_5 = g_0 r_0 a_0 u_5 + g_0 r_5 a_0 u_1 \]
\[I_6 = g_0 r_0 a_0 u_6 + g_0 r_5 a_0 u_2 \]
\[I_7 = g_0 r_0 a_0 u_7 + g_0 r_5 a_0 u_3 + g_0 r_5 a_2 u_1 \]
\[I_8 = g_0 r_0 a_0 u_8 + g_0 r_5 a_0 u_3 + g_0 r_5 a_2 u_2 \]
\[I_9 = g_0 r_0 a_0 u_9 + g_0 r_5 a_2 u_1 \]
\[I_{10} = g_0 r_0 a_0 u_{10} + g_0 r_5 a_2 u_3 \]
\[I_{11} = g_0 r_0 a_0 u_{11} + g_0 r_5 a_2 u_3 \]
\[I_{12} = g_0 r_0 a_0 u_{12} \]
\[I_{13} = g_0 r_0 a_0 u_{13} + g_0 r_5 a_2 u_0 \]
\[I_{14} = g_0 r_0 a_0 u_{14} + g_0 r_5 a_2 u_1 \]
\[I_{15} = g_0 r_0 a_0 u_{15} + g_0 r_5 a_2 u_2 \]
\[I_{16} = g_0 r_0 a_0 u_{16} + g_0 r_5 a_2 u_3 \]
\[I_{17} = \text{NA contribution only} \]

Solving these parameter values estimates \(^{13}\text{C}\) incorporation into UDP-GlcNAc biosynthesis.

Moseley et al., BMC Biol 2011;9:37

Metabolism is Substructures

Moiety Model Output: Deconvoluted Time Course of UDP-GlcNAc

There is no: "Biosynthetic rate" or "Flux thru" UDP-GlcNAc

Metabolism is substructures

Example: LNCaP-LN3 prostate cancer cells with and without MSA (methylselenic acid)

Without MSA

With MSA

Earlier example of “global” lipid analysis was regarding substructures.

Control

Selenite

CH₂-O-R₁ (C18:0)

CH₂-O-R₂ (C20:4)

CH₂-O-P-inositol

PI

“Sufficient” MS Resolution

FT-MS of Lipids:
5000 real peaks in 5 min
A549 cells U-[13C]-glucose

How do we know it’s [13C]-labeled?

FT-MS of Lipids:
5000 real peaks in 5 min
A549 cells U-[13C]-glucose

Need Sub-atomic Resolving Power!
“Sufficient” Resolution Unlocks Untargeted Analysis with Nanospray Sensitivity in 10 min

- **A** (12C): FTMS 12C
- **B** (13C): FTMS 13C

How Much is “Sufficient” Resolution?

- +2 sits on top of +0, same intensity
- R=100K is required theoretically
- Let’s increase abundance of [13C2]PC34:3 by 10x

How Much is “Sufficient” Resolution?

- Increased abundance of [13C2]PC34:3 by 10x
- Abundance changes the resolution requirement !!!
- R ≥ 200K is required actually

Lorkiewicz et al., Metabolomics DOI: 10.1007/s11306-011-0388-y
“Sufficient” Resolution Unlocks Untargeted Analysis with 13C

<table>
<thead>
<tr>
<th>m/z</th>
<th>UTP</th>
<th>CTP</th>
<th>ATP</th>
</tr>
</thead>
<tbody>
<tr>
<td>505</td>
<td>13C</td>
<td>13C</td>
<td>13C</td>
</tr>
<tr>
<td>507</td>
<td>13C</td>
<td>13C</td>
<td>13C</td>
</tr>
</tbody>
</table>

Unlabeled

Increase “Sufficient” Resolution to >350K Enables MS1 = Untargeted Multiplexing of Isotopic Substructures Ex: 13C15N Nucleotides

Wait! Earlier +5 was 13C$_2$: ribose ring. What gives?

“Sufficient” Resolution Unlocks Untargeted Analysis with 13C – Substructure with MS1

<table>
<thead>
<tr>
<th>m/z</th>
<th>UTP</th>
<th>CTP</th>
<th>ATP</th>
</tr>
</thead>
<tbody>
<tr>
<td>505</td>
<td>13C</td>
<td>13C</td>
<td>13C</td>
</tr>
<tr>
<td>507</td>
<td>13C</td>
<td>13C</td>
<td>13C</td>
</tr>
</tbody>
</table>

Unlabeled

Increase “Sufficient” Resolution to >350K Enables MS1 = Untargeted Multiplexing of Isotopic Substructures Ex: 13C15N Nucleotides

From 13C$_5$N$_2$ Gln

Key Concepts of “Sufficient” MS Resolution

- Biochemical Information Content
- Structural Data Content

Decimal Places of Resolution

Outline

- Stable-Isotope Resolved Metabolism
 - Intro
 - Metabolism is substructures
 - “Sufficient” Resolution in MS
 - Forward to mSIRM

HUMAN SUBJECTS

13C Dispersal into Substructures

HUMAN SUBJECTS

13C 15N SIRM in Tissue Slice Expts

Prep

blood sample

Tissue resection: tumor x non-tumor

Lab

Sample medium at 0 and other timed intervals

Insulate 37°C 4 h

Freeze

T h retrieve slices, part into formalin, freeze remainder

Extract metabolites

Extract into polar + non-polar + protein fractions

Quantitative isotopomer and isotopologue analysis by NMR and MS

1-C metabolism

Gly

SHMT

Ser

CO2

Oxaloacetate

Citrate

c-Aconitate

CO2

Succinate

Glu

Lactate

Aspartate

Malate

Fumarate

Succinyl CoA

Glu

NC

CA

Warburg slices

Sellers et al. JCI http://dx.doi.org/10.1172/JCI72873

Fan et al, Bioprotocols, in press

Fan et al, Cold Spring Harbor Molecular Case Studies, accepted
SIRM provides atom-resolved sources of nucleotide synthesis
Lesson in using double-label

Cancer cells use biosynthesized Gly for nucleotide biosynthesis
vs abundant exogenous Gly
Lesson in double-label

Other isotopes help track ^{13}C & vice versa

Data from Sellers et al. JCI http://dx.doi.org/10.1172/JCI72873
Cancer cells use biosynthesized Gly for nucleotide biosynthesis vs abundant exogenous Gly

Lesson in double-label

Summary

• Stable-Isotope Resolved Metabolism
 ➢ Metabolism is substructures
 ➢ “Sufficient” Resolution in MS
 ➢ Forward to mSIRM

13C 15N labeling = biologically relevant substructures with untargeted MS1

13C 15N labeling = biologically relevant substructures with untargeted MS1

….. revealing key dynamics of single-label by using double-label
Summary

• Stable-Isotope Resolved Metabolism
 ➢ Metabolism is substructures
 ➢ "Sufficient" Resolution in MS
 ➢ Forward to mSIRM

Untargeted MS1: Simultaneous multiple pools with 13C 15N labeling

HIT enables human patient Cancer vs Non-cancer tissues