Introducing Metabolomics: the Biochemical Balancing Act

Teresa Cassel

University of Louisville

Molly Woofter

Jefferson County Public Schools

Outline

- High School at U of L
- Metabolomics
- Universality of many chemical reactions
 - Ubiquitous Oxidation reactions
 - Identical reactions and/or products can have very different impacts on biological systems
- Telling one reaction from another
 - Isotopomer analysis as a tool
 - Using metabolomics to find answers to cancer

Introducing CREAM

- Center for Regulatory and Environmental Analytical Metabolomics - 2005
- Sponsors:
 - National Science Foundation
 - State of Kentucky
 - University of Louisville
- High School Outreach, so far
 - Cancer cell and lipid metabolism labs
 - Four High School, one Junior High, students
 - Six posters at Regional Science Fairs, one Navy Research Institute award winner.

Supporting Teachers' Science Education

- Survey
 - How can CREAM provide information and support?
 - Form a cooperative to share resources, support, and experience.
- Provide resources to add to your toolbox
 - CD-ROM to take home today
 - Help answer students' questions about relevance of science today

Future Outreach

LTQ FT-MS

- Planning a Teacher Day at U of L
 - Professors from several departments
 - Tour laboratories
 - See cutting-edge research in action

- "Science immersion day"
 - Give you a chance to explore and indulge your science curiosity
 - Enhance your current science knowledge, giving you more to take into the classroom

Oxidation-Reduction

- Reactions in which electrons are transferred between atoms.
 - Electron gain = reduction
 - Electron loss = oxidation
- Green surface on Copper roofs

$$2Cu(s)+O_2(g)+4H+(aq) \longrightarrow 2Cu^{2+}(aq)+2H_2O(I)$$

- Hydrated copper (II) carbonate and sulfate formed from oxidation
- in the presence of atmospheric CO₂ and SO₂

Reactive Oxygen Species

- Ozone (O₃), hydroxyl radicals (OH), atomic oxygen (O), hydroperoxy radicals (HO₂).
- Both Photochemically and Enzymatically derived
- "Radical" is atom with an unpaired electron

Hydroxyl radical

Superoxide anion

Ozone in the Environment

- Stratosphere
 - 10-50 km from surface
 - Absorbs 98% UV light

- Troposphere
 - NO_x & VOC w/sunlight
 - Affects biotic health

Fig. 1. Schematic representation of the free radical catalysed oxidation of a VOC into its first generation carbonyl product(s) in the presence of NO_x, and the associated generation of ozone (O₃).

ROS formation in the cell

- Ionizing radiation
- Byproduct of cellular respiration
 - Unavoidable
 - Electron transport chain leakage
 - Produce the superoxide anion
- Synthesized by enzymes in phagocytic cells
 - Neutrophils
 - macrophages

ROS activity in the cell

Damages cell structures

- Hydroxyl radical acts on lipids in mitochondrial membranes
- Crosslinkages are formed
- Deformed lipids damage the membrane

Mitochondria Structural Features

ROS activity in the cell

Essential to cell health

- Thyroid gland uses H₂O₂ to attach lodine atoms
- Macrophages use the superoxide anion for phagocytosis
- Neutrophils use H₂O₂ to produce antiseptic hypochlorite ion

Life without ROS?

- Oxidation underpins most energy used by humans
 - Combustion
 - Metabolism
- Managing oxidative products allows life to continue
 - In the cell and
 - In the environment

Metabolomics

- Metabolic pathways are a sequence of reactions
 - Take molecules apart (catabolism)
 - Build molecules usually from "scraps" (anabolism)
- The same reaction can be either destructive or supportive depending on the pathway it is associated with
- Many pathways produce the same products (metabolites)

A tool to identify the metabolic sources of chemically identical molecules.

The New World Order of "Omics"

From Peter James (ed), Proteome Research, 2001.

What is Cancer?

- Caused by abnormal genetic material
 - They exist side-by-side with "normal" cells
- Cells are aggressive, invasive, metastatic
 - They exhibit uncontrolled growth
- Identify cancer cells by characteristic metabolism

Metabolomics in Cancer Research

- Diagnostic biomarkers: compounds only formed by cancer cells that can be detected in biofluids (blood, urine, etc.)
- Test proposed treatments: does the metabolism of cancer cells slow down?
- Discover new treatments: Block metabolism used exclusively by cancer cells

Isotopomers (isotopic isomers)

- Isomers with the same number of each isotopic atom but differing in their positions
 - Number of neutrons + protons Mass number
 - molecules with the same chemical formula but in which the atoms are arranged differently
- Radiocarbon dating uses radioisotope ¹⁴C
- Labeling uses stable isotope ¹³C

Symbol	¹² C	¹³ C	14 C
Neutrons	6	7	8
Protons	6	6	6
abundance	99%	1 %	1ppt

How are isotopomers created?

- Inject uniformly labeled glucose (all C are ¹³C)
- Leave the cell to "do it's thing" for 24 hours
- Find that the cell now has fatty acids with ¹³C carbons.
- How did the ¹³C get into the fatty acids?
 - Magic?
 - Osmosis?
- ONLY Metabolism can take the molecule apart and build another one.

National Geographic News Jan. 12, '06

Dogs detect cancer

- in human breath
- 88-97% accuracy

Biomarkers

- Metabolite in biofluid (e.g. blood)
- Need high
 - Sensitivity
 - Specificity
- Isotopomer analysis sorts metabolites by pathway
- Those from cancer cells can be identified

Tissue resection studies

- Infuse ¹³C glucose
- Remove normal and cancer tissue
- Compare pathways used by different cell types
- Helpful to many projects:
 - Biomarkers
 - Treatment evaluation
 - Drug discovery

Evaluation of cancer treatment

- Chemotherapy = side effects
 - Normal cells will be killed by cancer poisons
 - Drug companies test the drug in isolation
- Ovarian cancer cells can be "made" more sensitive to platinum-based therapies
 - Potential gene therapy
- How do multiple therapies work together?
 - Effects on cancer cells
 - Effects on normal cells

Cancer drug development

Summary

- One reaction can be either destructive or supportive depending upon the pathway.
 - Sometimes differentiated in space (organelle, atmospheric level) or time
- Metabolism is a series of reactions that take apart and build molecules (metabolites).
- Cancer is primarily distinguished by metabolism
- The use of isotopomer metabolomics
 - Distinguishes normal cell from cancer cell activities
 - Identify and target cancer while supporting normal cell

Acknowledgements

- Dr. Teresa Fan Director
- Drs. Andrew Lane and Richard Higashi Associate Directors
- Dr. Michael Bousamra II, MD Cardiothoracic surgeon
- Ricky Woofter Graduate Student in Chemistry
- Funded by NSF-EPSCoR grant EPS-0447479

CD Summary

- Contains over 30 ready to use activities for your classroom
- List of frequently used web pages and addresses
- 6 folders
 - Air Pollution
 - Cancer
 - Genomics
 - Metabolomics
 - Periodic Table and Basic Chemistry
 - Toxicology

Air Pollution Highlights

- Ground Ozone Lab
 - Uses basic materials and the Schoenbien Color Scale to determine ground level ozone

Colors on the scale below indicate the amount of ozone in the area

Cancer Highlights

- Mitosis Run Amok and Cancer Brochure
 - Ideal for a KY portfolio piece in a Life Science class

Genomics Overview

- Various Activities ranging from webquests to transcription/translation practice
- Lots of practice problems

Metabolomics Highlights

- Articles discussing this up and coming science
- Can be used during CATS review time to help with reading comprehension skills

Periodic Table and Basic Biochemistry Highlights

- Lots of review sheets covering information ranging from unit conversions to organic chemistry
- Half Life Labs
 - Can be used in various science classes
 - Cheap and easy to do!

Toxicology Highlights

- Energy in the Food Web
 - Biomagnification
 - Energy Transfer
- Basic Toxicology Lab Stations
 - LD 50
 - Dose/response

Web Pages

- This information is on the document labeled "Basic Summary of Items on CD"
 - Lists the main websites I have used in teaching my AP Biology and AP Environmental Science classes